Glycemic Control and Cardiovascular Disease in Patients With Type 1 Diabetes

Reviewed by K.M. Venkat Narayan, MD, MPH, FRCP, FACP

STUDY

SUMMARY
Objective. To investigate whether the use of intensive glycemic control versus conventional therapy during the Diabetes Control and Complications Trial (DCCT) affected the long-term incidence of cardiovascular disease (CVD).

Design. The DCCT randomly assigned 1,441 patients with type 1 diabetes to intensive or conventional therapy, treating them for a mean of 6.5 years. Ninety-three percent were subsequently followed for CVD in the Epidemiology of Diabetes Interventions and Complications (EDIC) study.

Setting. Multicenter study in the United States.

End points. CVD was defined as nonfatal myocardial infarction, stroke, death from CVD, confirmed angina, or the need for coronary artery revascularization.

Results. At the end of the DCCT, after 6.5 years of treatment, mean hemoglobin A1c (A1C) was 7.4% in the intensive group and 9.1% in the conventional group. This difference resulted in major benefits in reducing microvascular complications. The DCCT cohort was then followed up in EDIC for 11 years, and the average A1C at its conclusion in February 2005 was 7.9% in the intensive group and 7.8% in the conventional group. During 11 years of post-DCCT follow-up, the intensive group worsened by only 0.5 of a percentage point, but the conventional group benefited from switching to intensive treatment, and the gap between the two groups almost disappeared. Although glycemia tends to worsen with age, the experience from the DCCT/EDIC study demonstrates that it is possible to achieve average levels of A1C < 8% at 17 years of follow-up.

By the conclusion of the EDIC, the risk of any CVD was 42% lower in the group treated intensively in the DCCT for 6.5 years than in those treated conventionally. Although the mean A1C in the two groups converged, the DCCT intensive group benefited in terms of CVD. All other risk factors (blood pressure, lipids, and smoking) were similar in the two groups. This study has thus demonstrated conclusively for the first time that CVD can be reduced substantially and independently by intensive glycemic control.

The study has two important limitations. First, the numbers of events were
One concern about tight glycemic control in people with diabetes is the risk of hypoglycemia. In the past 5–10 years, however, innovations in glycemia testing, drugs, and delivery methods mean that the risk of hypoglycemia, while serious, should be manageable through good evidence-based protocols.

The results of the DCCT/EDIC study provide stronger justification for tight control of glycemia among people with diabetes. The challenge will be to translate these findings into practice. This will require a different mindset and a corresponding set of new strategies to implement aggressive diabetes control while keeping side effects low.

An obvious question is whether these results will apply to people with type 2 diabetes. The Action to Control Cardiovascular Risk in Diabetes trial is addressing this question, and so is the Veterans Affairs Glycemic Control and Complications in Diabetes Type 2 trial. Evidence for reduction in microvascular complications from tight glycemic control among people with type 2 diabetes already exists.

small. Second, the interventions were unmasked at the end of the DCCT. Despite these limitations, this rigorously conducted study provides the best evidence yet of a link between glycemia and CVD.

K.M. Venkat Narayan, MD, MPH, FRCP, FACP, is a physician-epidemiologist at the Centers for Disease Control and Prevention (CDC) and an adjunct professor at the Rollins School of Public Health at Emory University in Atlanta, Ga. The views and conclusions expressed in this article are those of the author and do not necessarily represent the official position of the CDC.

REFERENCES

1Saydah SH, Eberhardt MS, Loria CM, Bran
cati FL: Age and the burden of death attributable
to diabetes in the United States. Am J Epidemiol
156:714–719, 2002

K.M. Venkat Narayan, MD, MPH,
FRCP, FACP, is a physician-epidemiolo-
gist at the Centers for Disease Control
and Prevention (CDC) and an adjunct
professor at the Rollins School of Public
Health at Emory University in Atlanta,
Ga. The views and conclusions
expressed in this article are those of the
author and do not necessarily represent
the official position of the CDC.