Skip to main content
  • More from ADA
    • Diabetes
    • Diabetes Care
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Standards of Medical Care, Abridged
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Clinical Diabetes

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Standards of Medical Care
    • ADA Standards of Medical Care, Abridged
  • Browse
    • Issue Archive
    • Saved Searches
    • COVID-19 Article Collection
    • Quality Improvement Sucess Stories
    • ADA Standards of Medical Care
    • ADA Standards of Medical Care, Abridged
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
  • Advertising
  • Reprints/Reuse
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • Instructions for Authors
    • ADA Journal Policies
  • More from ADA
    • Diabetes
    • Diabetes Care
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Standards of Medical Care, Abridged
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Clinical Diabetes
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • ADA Standards of Medical Care
    • ADA Standards of Medical Care, Abridged
  • Browse
    • Issue Archive
    • Saved Searches
    • COVID-19 Article Collection
    • Quality Improvement Sucess Stories
    • ADA Standards of Medical Care
    • ADA Standards of Medical Care, Abridged
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
  • Advertising
  • Reprints/Reuse
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Submit Cover Art
    • Instructions for Authors
    • ADA Journal Policies
Features

Diabetes and Periodontal Infection: Making the Connection

  1. Janet H. Southerland, DDS, MPH, PhD,
  2. George W. Taylor, DMD, DrPH and
  3. Steven Offenbacher, DDS, PhD, MMSc
    Clinical Diabetes 2005 Oct; 23(4): 171-178. https://doi.org/10.2337/diaclin.23.4.171
    PreviousNext
    • Article
    • Info & Metrics
    • PDF
    Loading

    Abstract

    IN BRIEF

    This review focuses on the relationship between diabetes and periodontal infection and potential mechanisms involved in local and systemic disease progression. In addition, various oral complications of diabetes are discussed, along with recommendations for management, treatment, and proper referral.

    The oral cavity provides a continuous source of infectious agents, and its condition often reflects progression of systemic pathologies. Historically, oral infections were thought to be localized to the oral cavity except in the case of some associated syndromes and untreated odontogenic abcesses. A change in paradigm has dispelled this notion, and a whole new concept of the status of the oral cavity and its impact on systemic health and disease has evolved.

    Diabetes affects > 18 million individuals in the United States and > 171 million individuals worldwide and has reached epidemic status.1 The disease is characterized by an increased susceptibility to infection, poor wound healing, and increased morbidity and mortality associated with disease progression. Diabetes is also recognized as an important risk factor for more severe and progressive periodontitis, infection or lesions resulting in the destruction of tissues and supporting bone that form the attachment around the tooth.

    Both diseases are thought to share a common pathogenesis that involves an enhanced inflammatory response that can be observed at the local and systemic level.2-6 The inflammatory response is mainly caused by the chronic effects of hyperglycemia and specifically the formation of biologically active glycated proteins and lipids that promote inflammatory responses.7,8

    Although there are undoubtedly underlying genetic contributions to diabetes and periodontitis, the focus of research in this area has targeted the bacterial and host contributions to expression of disease.9-11 Both populationbased and mechanistic studies have examined the potientating effects of periodontal infection in the presence of hyperglycemia and have demonstrated increased innate immune responses and periodontal tissue destruction related to an altered inflammatory response.12-15 Collectively these studies have provided insight into molecular mechanisms that support observed epidemiological associations between periodontal diseases and diabetes. The purpose of this review is to make the connection between periodontal disease and diabetes based on information in the literature and to discuss proper management and referral of patients who have signs and symptoms of periodontal disease and other oral complications.

    PERIODONTAL DISEASE AND BACTERIAL INFECTION

    Periodontal infection represents a complication that may be involved in altering systemic physiology in diabetic patients. Since periodontitis can be more than just a localized oral infection, the effects have been hypothesized to be far-reaching.16,17 Severe chronic forms of this disease can result in systemic response to the bacteria and bacterial products that are disseminated due to breakdown of the periodontal apparatus (the ligament attachment around the tooth that includes the gingival tissues and bone). The interrelationships between diabetes and periodontal disease provide an example of systemic disease predisposing to oral infection, and once that infection is established, the oral infection exacerbates the progression of systemic disease.

    In addition, it is also possible for oral infection to serve as a metabolic stressor that may exacerbate systemic disease. In order to understand cellular and molecular mechanisms responsible for such a cyclical association, one must identify common physiological changes associated with diabetes and periodontitis that produce a cooperative effect when the conditions coexist. Accumulation of advanced glycation end products (AGEs) as a result of the chronic hyperglycemic state or diabetes, coupled with the presence of infection and an exaggerated host response, may provide a viable explanation for the clinical outcomes observed in diabetic patients with periodontal disease.

    Bacterial products such as endotoxin or lipopolysaccharide (LPS) also play a role in propagating an inflammatory response in the host through the Toll-like protein receptors (TLRs) and thus can induce an inflammatory cascade.18 These receptors play an important role in the innate immune response, particularly in the initial interaction between the infecting microorganisms, such as Porphyromonas gingivalis, and phagocytic cells of the monocyte lineage.19 Genetic and biochemical studies have shown that the toll protein family members play a critical role in the immediate response to infection.20,21 Although LPS monocyte interactions provide one of the best-studied models of innate immunity using gram-negative bacteria and the bacterial endotoxin, the mechanisms behind periodontal disease and the regulation of TLR protein expression are still not well understood.

    PERIODONTAL DISEASE AND DIABETES

    Chronic hyperglycemia has been closely associated with an inflammatory response that has been linked to complications observed in diabetes. The presence of periodontal disease represents a unique opportunity for oral pathogens and their products to gain access to the systemic circulation. Bacterial toxins are known to elicit immune responses that can disrupt homeostasis of the system and in some instances can result in lethal outcomes to the individual.

    Diabetes and periodontal disease are common chronic diseases observed in the U.S. population. These diseases are thought to be associated biologically, and a number of reviews and studies have proposed mechanisms to explain the relationship, including 1) microvascular disease, 2) changes in components of gingival crevicular fluid, 3) changes in collagen metabolism, 4) an altered host response, 5) altered subgingival flora, 6) genetic predisposition, and 7) nonenzymatic glycation.22-28

    In addition, in vitro studies of monocytes from people with diabetes have shown a hyperresponsive phenotype with overexpression of pro-inflammatory mediators such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and prostaglandin E2.3,29 In similar in vivo studies, patients with periodontitis and diabetes were found to have significantly higher levels of local inflammatory mediators compared to systemically healthy individuals with periodontal disease.13,30

    Advances in the molecular biology of insulin resistance and β-cell dysfunction increasingly support a role for inflammatory mediators, particularly cytokines, and elements of the innate immune system in the pathogenesis of type 2 diabetes.31 Cytokine production as a consequence of an infectious challenge could potentially contribute to insulin resistance in a number of ways, including 1) modification of insulin receptor substrate-1 by serine phosphorylation,32 2) alteration of adipocyte function with increased production of free fatty acids,33,34 and 3) diminution of endothelial nitric oxide production.35,36 The process may also alter pancreatic β-cell function, either acting directly37,38 or through stimulation of free fatty acid production.39,40 In fact, cytokine-induced mechanisms have been suggested to participate in the β-cell damage or “burn-out” seen in animal obesity models of type 2 diabetes that may be mediated through a c-Jun NH2-terminal kinase-induced insulin resistance model.41-43

    Fasting insulin is considered a marker, though imperfect, of insulin resistance. Increased resistance to skeletal muscle glucose uptake is part of the physiological adjustment to the catabolic milieu seen in inflammation.44-47 As cytokines or inflammatory mediators decrease insulin sensitivity, insulin resistance may be part of a causal pathway linking inflammatory mediators to incident diabetes. Adipocytes produce large quantities of cytokines, such as TNF-α and IL-1β, in the presence of inflammation.34 Infections have been investigated with regard to the development of coronary heart disease, with mechanisms similar to those discussed here being proposed to mediate their effects.48-50 Diabetes and infections have long been known to contribute to metabolic dysregulation.51-53 This fact allows us to speculate that repeated or chronic infections such as periodontitis, or some susceptibility to them, may represent an additional causal element for type 2 disease, a hypothesis that deserves further study.

    ADVANCED GLYCATION

    Evidence has accumulated supporting a role for AGEs in exacerbating diabetic systemic complications and periodontal disease severity associated with a chronic and intense inflammatory response. Moreover, AGEs have been associated with enhanced oxidant stress54,55 and subsequent expression of endothelial expression of vascular cell adhesion molecule 156; altered structure and function of basement membrane in vitro,57 which are detected in situ in tissues from diabetic animals and humans;56-58 upregulation of proinflammatory cytokines, such as IL-1β, TNF-α, and IL-6; and growth factors such as platelet-derived growth factor.59-62

    The irreversible nature of AGEs and the interaction with their receptors63 provides an environment in which tissues and cells are constantly exposed to these products, thereby creating a state of heightened cellular activity. The severity and progression of periodontal disease in diabetes often does not correlate with the classical presentation in a non-systemically challenged patient. The amount of tissue destruction found in patients with diabetes may not correspond to the etiological burden (i.e., bacterial plaque) observed clinically.

    The host response during an infectious challenge involves a number of cytokines and hormones of the immune system. These effector molecules serve to modulate the interactions between various cells types involved in the inflammatory process. Inflammation is a complex set of events and involves release of mediators by resident and infiltrating cells. Chronic hyperglycemia with accumulation of AGEs is associated with increased expression of various genes regulated by the transcription factor nuclear factor-κB (NF-κB).64 Strong evidence has accumulated to indicate that chronic dysregulation of NF-κB activation may contribute to many inflammatory diseases, such as periodontal disease.65-68 AGEs and LPS-induced NF-κB activation could be responsible for promoting the aberrant transcriptional gene regulation observed in diabetic patients with periodontitis that may be directly related to the accumulation of AGEs intra- and extracellularly.

    PERIODONTITIS AND CARDIOVASCULAR OUTCOMES IN PATIENTS WITH DIABETES

    Diabetes is a systemic disease with a number of major complications that may adversely affect quality and length of life, particularly as it relates to cardiovascular events and sudden death. Studies to date have reported conflicting associations between oral infection, coronary heart disease, and incident coronary heart disease.69-71 However, there is evidence that dental infection is associated with coronary atherosclerosis and that bacterial DNA has been identified in atherosclerotic plaques,65,66 and other studies have related dental infection to the incidence of coronary events.65,66

    The Dental Atherosclerosis Risks in Communities Study is one of the studies providing evidence of a relationship between periodontal infection and presence of subclinical atherosclerosis.67 Also, data available from the Insulin Resistance Atherosclerosis Study has shown that chronic hyperglycemia was positively associated with increased intimal-medial wall thickness (IMT). This study demonstrated an independent association between fasting glucose and individuals with established diabetes and IMT.68

    Although studies have reported separately on associations of periodontitis and diabetes and periodontitis and coronary heart disease, the impact of periodontitis on progression of cardiovascular disease in individuals with diabetes has not been extensively investigated. It is believed that infection-mediated upregulation of cytokines and other inflammatory mediators play a central role in this pathological process. The high prevalence of cardiovascular disease and periodontitis in individuals with diabetes may be attributed to an increased inflammatory response leading to atherosclerosis that is usually more extensive and that develops at an earlier age compared to those without diabetes.

    ORAL COMPLICATIONS OF DIABETES

    Periodontal disease has been reported as the sixth complication of diabetes, along with neuropathy, nephropathy, retinopathy, and micro- and macrovascular diseases.72 Many studies have been published describing the bidirectional interrelationship exhibited by diabetes and periodontal disease. Studies have provided evidence that control of periodontal infection has an impact on improvement of glycemic control evidenced by a decrease in demand for insulin and decreased hemoglobin A1c levels.73-75

    In addition to periodontal infection and gingival inflammation, a number of other oral complications have often been reported in patients with diabetes. These include xerostomia, dental caries, candida infection, burning mouth syndrome, lichen planus, and poor wound healing. Proper management of these complications requires that they first must be properly diagnosed. Many of the problems can be properly identified by provision of a comprehensive oral examination at each medical or dental visit.

    Periodontal Disease and Gingivitis

    The classic presentation of periodontal disease is associated with accumulation of plaque and calculus that harbors bacteria and potent virulence factors, which lead to destruction of periodontal tissues and resorption of alveolar bone around the teeth. Periodontitis is often preceded by various stages of gingival inflammation referred to as gingivitis. Gingivitis is an inflammation of the gums and is the initial and most easily treatable stage of gum disease.

    The direct cause of gingivitis is plaque, the soft, sticky, colorless film of bacteria that forms constantly on the teeth and gums. Classic signs and symptoms of gingivitis include red, swollen, tender gums that may bleed upon tooth-brushing. If gingivitis is not treated, it can and often will progress to periodontal disease. The infection then leads to formation of pockets between the teeth and gums signaling breakdown of the periodontal apparatus and bone. Some patients may experience recurring halitosis (bad breath) or a bad taste in the mouth, even if the disease is not advanced. The gum tissue around teeth may also have receded along the root surface, exposing the roots and giving teeth an elongated appearance.

    Therapeutic goals for management of periodontal disease and gingivitis in patients with diabetes must involve elimination of infection by removal of plaque and calculus, a decrease in the inflammation response, and maintenance of glycemic control. Management should be accomplished by regular dental cleaning every 6 months by a licensed dental care provider and routine oral self-care (tooth-brushing and flossing) by patients.

    Studies have compared the efficacy of different types of toothbrushes (manual, oscillating, or sonic) and have found that the mode of tooth-brushing may affect the amount of plaque retained interproximally.76,77 Several studies have found the oscillating or sonic brushes most effective. The American Dental Association recommends brushing at least twice a day and daily flossing.78,79 Generally, morning and night are convenient brushing times for most people. Toothbrushes should be replaced every 3-4 months. Children's toothbrushes may need to be replaced more often.

    In addition, there are a number of over-the-counter and prescription oral antibacterial rinses that can decrease bacterial load to allow for tissue healing and repair. Listerine and chlorhexidine gluconate (Peridex) have the acceptance and seal of the American Dental Association's Council on Dental Therapeutics. Listerine involves bacterial cell wall destruction, bacterial enzymatic inhibition, and extraction of bacterial LPS. Chlorhexidine has the ability to bind to hard and soft tissue with slow release.80 Other products that have been shown to have promising antimicrobial effects are mouth rinses and dentifrices containing triclosan.81,82

    Based on the amount of progression of periodontal disease, more aggressive therapeutic interventions may be indicated. Therapy may involve surgery, antimicrobials (local or systemic), or a combination of both.

    Acute episodes of oral infection in diabetic patients should be addressed immediately. Appropriate antibiotics and pain management should be provided, along with referral to a dentist as soon as possible. The most common antibiotic used for treatment of acute dental infection is amoxicillin; for individuals who are allergic to penicillin, clindamycin is the drug of choice. Because of concerns within the medical and dental communities about the development of antibiotic resistant organisms, the minimum effective dose should be given. The dosage for amoxicillin is 250 mg, three times a day for 7 days, or clindamycin, 300 mg four times a day for 7 days. For patients with uncontrolled diabetes, the dosages may need to be higher and prescribed for longer periods of time to address defective immune and healing responses. Chronic periodontal disease should also be identified, and patients having it should be referred to a dental practitioner for evaluation and treatment.

    Xerostomia and Dental Caries

    Diabetes can lead to marked dysfunction of the secretory capacity of the salivary glands.83 This process is often associated with salivary gland dysfunction. Xerostomia is qualitative or quantitative reduction or absence of saliva in the mouth. It is a common complication of head and neck radiation, systemic diseases, and medications.

    Normal salivary function is mediated by the muscarinic M3 receptor.84-86 Efferent nerve signals mediated by acetylcholine also stimulate salivary glandular epithelial cells and increase salivary secretions.87 Individuals with xerostomia often complain of problems with eating, speaking, swallowing, and wearing dentures. Dry, crumbly foods, such as cereals and crackers, may be particularly difficult to chew and swallow. Denture wearers may have problems with denture retention, denture sores, and the tongue sticking to the palate. Patients with xerostomia often complain of taste disorders (dysgeusia), a painful tongue (glossodynia), and an increased need to drink water, especially at night.

    Xerostomia can lead to markedly increased dental caries, parotid gland enlargement, inflammation and fissuring of the lips (cheilitis), inflammation or ulcers of the tongue and buccal mucosa, oral candidiasis, salivary gland infection (sialadenitis), halitosis, and cracking and fissuring of the oral mucosa.88,89 In patients with xerostomia, development of dental caries can be rampant and severe and, if left untreated, can result in infection of the dental pulp and tooth abcess.

    The onset of caries requires Streptococci mutans bacteria. These bacteria adhere well to the tooth surface and produce higher amounts of acid from sugars than other bacteria in the mouth. When the proportion of S. mutans in plaque is high (in the range of 2-10%) a patient is at high risk for caries.90-101 The combination of bacteria in the presence of a dry mouth and a source of sugar intake may lead to a high dental caries risk.

    Etiology of xerostomia is associated with a noninflammatory, nonneoplastic enlargement of the parotid gland believed to occur in 25% of patients with moderate to severe diabetes and especially in patients with type 1 diabetes and poor metabolic control.102

    Diagnosis of xerostomia and caries may be based on evidence obtained from patients' history or an examination of the oral cavity. Xerostomia would be suspected if a tongue depressor sticks to the buccal mucosa or, in women, if lipstick adheres to the front teeth. The oral mucosa will also be dry and sticky or appear erythematous, which could be the result of an overgrowth of Candida albicans. These can be red or white patches or both, often found on the hard or soft palate or dorsal surface of the tongue. Occasionally, pseudomembranous candidiasis will be present, appearing as removable white plaque on any mucosal surface. There may be little or no pooled saliva in the floor of the mouth, and the tongue may appear dry with decreased numbers of papillae. The saliva may appear stringy, ropy, or foamy. Dental caries may be found at the cervical margin or neck of the teeth (the area where the tooth meets the gum) or the incisal margins (the edges or biting surfaces of teeth). Dry mouth is often exacerbated by activities such as hyperventilation, breathing through the mouth, smoking, or drinking alcohol.

    Palliative interventions include saliva substitutes and stimulants. Many products can be purchased directly from the local pharmacy (xerolube, biotene products), while others will require prescription (pilocarpine, cevimeline).

    Candidiasis

    Oral candida is an infection of the yeast fungus C. albicans. The infection can occur as a side effect of taking medications such as antibiotics, antihistamines, or chemotherapy drugs. Other disorders associated with development of xerostomia include diabetes, drug abuse, malnutrition, immune deficiencies, and old age. Candida is present in the oral cavity of almost half of the population and has been shown be prevalent in people with diabetes as well. Studies have shown a higher prevalence candida in diabetic versus nondiabetic individuals.103 In addition, Geerling et al.104 reported a significantly higher prevalence of candida infection in people with diabetes.

    The manifestation of candida can occur in many different forms and include median rhomboid glossitis, atrophic glossitis, denture stomatitis, and angular cheilitis. Candida does not generally become a problem until there is a change in the chemistry of the oral cavity that favors candida over the other micro-organisms present. Contributing factors to infection are salivary dysfunction, a compromised immune system, and salivary hyperglycemia.105,106

    Candida infection is also found commonly in denture wearers.107 In the case of infection, the denture should be treated as well as the patient. The denture should be cleaned thoroughly and can be soaked or lined with anti-fungal medication or chlorhexidine. Further, ill-fitting dentures can cause breaks in the mucosal membranes at the corners of the mouth that can act as a nidus for candidal growth.

    Treatment of candida infection is fairly straightforward and involves prescribing a therapeutic regimen of antifungals that can be applied locally. Common antifungals used are nystatin, clotrimazole, and fluconazole. Dosage for these medications will depend on the manifestation and extent of the infection and use of pastilles, lozenges, or troches to provide a local as well as systemic effect.

    Lichen Planus

    Oral lichen planus is a chronic inflammatory disease that causes bilateral white striations, papules, or plaques on the buccal mucosa, tongue, and gingivae. Erythema, erosions, and blisters may or may not be present. The pathogenesis of the disorder is unknown. Studies suggest that lichen planus is a T-cell-mediated autoimmune disease in which cytotoxic CD8+ T-cells trigger apoptosis of the oral epithelial cells.108,109 Microscopically, a lymphocytic infiltrate is described that is composed of T-cells almost exclusively, and many of the T-cells in the epithelium adjacent to the damaged basal keratinocytes are activated CD8+ lymphocytes.

    Lichen planus may predispose individuals to cancer and oral C. albicans superinfection.110,111 Fewer than 5% of these patients will develop oral squamous cell carcinoma (SCC).112 Atrophic, erosive, and plaque lesions may pose a greater risk of malignant change, although SCC may arise in the unaffected oral mucosa as well.

    The aim of treatment is to eliminate mucosal erythema, ulceration, pain, and sensitivity. This may involve topical or systemic steroid management. The use of steroids in individuals with diabetes may present additional complications, such as antagonism of insulin and subsequent hyperglycemia. Therefore, therapy by the dentist should be done in close consultation with the physician to avoid adverse reactions and drug interactions.

    Burning Mouth Syndrome

    A combination of factors appears to play a role in this process. Burning mouth syndrome is a chronic, oral pain condition associated with burning sensations of the tongue, lips, and mucosal regions of the mouth. The pathophysiology is mainly idiopathic but can be associated with uncontrolled diabetes, hormone therapy, psychological disorder, neuropathy, xerostomia, and candidiasis.113,114 Generally, there are no detectable lesions associated with the syndrome, which is based solely on patient report of discomfort.

    Treatment is targeted at the symptoms and requires attention to glycemic control, which will result in reduction of other complications involved in the process. Medications often used for this condition, benzodiazepines, tricyclic antidepressants, and anticonvulsants, have been shown to be effective therapies. Care must taken prescribing these medications to patients with diabetes because of associated xerostomic effects.

    CONCLUSIONS

    Maintenance of a healthy dentition for the purpose of asthetics, dietary intake and nutrition, quality of life, and overall general health is the ultimate goal of dental health care. In addition to public awareness and education efforts, much of dental care is focused on effective and efficient preventive and therapeutic management of two major clinical diseases: dental caries and periodontitis.115 While the prevalence of dental caries has declined in many but not all segments of the population, the prevalence of periodontal diseases in individuals with poorly controlled diabetes has been documented.15,116

    Many studies conducted during the past decade have focused on a change in approach to studying periodontal infection and its relationship to systemic health and disease. Periodontal diseases are recognized as infectious processes that require bacterial presence and a host response. Risk factors in conjunction with bacteria and the host response can affect the severity of disease, patterns of destruction, and response to therapy.

    Many medical conditions, particularly diabetes, predispose patients to development of more severe and progressive forms of periodontal disease.117-119 In an effort to focus attention on the need for better oral health outcomes for patients with diabetes and periodontitis or other oral complications, providers should take several action steps, including:

    1. Ask individuals with diabetes about their oral health, specifically if they have noticed any signs of infection, bad breath, or a bad taste in their mouth or if they have any other symptoms.

    2. Inquire about the last dental and oral health examination.

    3. Remind individuals with diabetes that they need periodic dental and periodontal examinations (every 6 months or more frequently) as recommended by the American Dental Association.

    4. Encourage contact with patients' dental care provider if they notice signs of infection such as sore, swollen, or bleeding gums; loose teeth; mouth ulcers; or pain.

    5. Perform an oral examination.

    6. Refer all diabetic patients without a dental provider, regardless of oral findings or complaints, to a dentist for preventive care.

    Although glycemic control is probably the single most important component in maintenance of good oral health in individuals with diabetes, attention to these action steps will be very helpful toward achieving improved overall oral and systemic health. All of these measures play an important role in maintaining oral health, particularly in diabetic patients.

    Many studies have emerged that focus on periodontal infection and systemic disease.120-122 The information from these studies suggests that measures to combat complications of diabetes, especially periodontitis and gingivitis, may be important in reducing additional systemic inflammatory burden, thus potentially preventing diabetes, cardiovascular disease, and other systemic morbidities.

    Footnotes

    • Janet H. Southerland, DDS, MPH, PhD, is an assistant professor in the Department of Dental Ecology and is the chair of Hospital Dentistry, chief of Oral Medicine, and director of the University of North Carolina Hospitals' Dental Clinic in Chapel Hill. George W. Taylor, DMD, DrPH, is an associate professor in the Department of Cariology, Restorative Sciences and Endodontics at the University of Michigan School of Dentistry in Ann Arbor. Steven Offenbacher DDS, PhD, MMSc, is OraPharma Distinguished Professor of Periodontology and director of the Center for Oral and Systemic Diseases at the University of North Carolina School of Dentistry in Chapel Hill.

    • Note of disclosure: Dr. Taylor has served on advisory panels related to oral and systemic health for Colgate, Pfizer, and Johnson & Johnson and has received honoraria for speaking engagements and consulting fees from Colgate and Pfizer. These companies manufacture and market products related to oral hygiene, periodontal health, and/or diabetes.

    • American Diabetes Association

    References

    1. ↵
      Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care27 : 1047-1053,2004
      OpenUrlAbstract/FREE Full Text
    2. ↵
      Schmidt MI, Duncan BB, Sharrett AR, Lind-berg G, Savage, PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss GB: Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 353:1649 -1652, 1999
      OpenUrlCrossRefPubMedWeb of Science
    3. ↵
      Slade GD, Offenbacher S, Beck, JD, Heiss G, Pankow JS: Acute-phase inflammatory response to periodontal disease in the US population. J Dent Res 79: 49-57,2000
      OpenUrlAbstract/FREE Full Text
    4. Brownlee M: The pathological implications of protein glycation. Clin Invest Med 18: 275-281,1995
      OpenUrlPubMed
    5. Luger A, Schernthaner G, Urbanski A, Luger TA: Cytokine production in patients with newly diagnosed insulin-dependent (type I) diabetes mellitus. Eur J Clin Invest 18:233 -236, 1988
      OpenUrlCrossRefPubMed
    6. ↵
      Nishimura F, Soga Y, Iwamoto Y, Kudo C, Murayama Y: Periodontal disease as part of the insulin resistance syndrome in diabetic patients. J Int Acad Periodontol 7:16 -20, 2005
      OpenUrlPubMed
    7. ↵
      Wautier, JL, Schmidt AM: Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 95:233 -238, 2004
      OpenUrlAbstract/FREE Full Text
    8. ↵
      Basta G, Lazzerini G, Del Turco S, Ratto GM, Schmidt AM, De Caterina R: At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler Thromb Vasc Biol25 : 1401-1407,2005
      OpenUrlAbstract/FREE Full Text
    9. ↵
      Cutler CW, Machen RL, Jotwani R, Iacopino AM: Heightened gingival inflammation and attachment loss in type 2 diabetics with hyperlipidemia. J Periodontol 70:1313 -1321, 1999
      OpenUrlCrossRefPubMedWeb of Science
    10. Lamster IB, Lalla E: Periodontal disease and diabetes mellitus: discussion, conclusions, and recommendations. Ann Periodontol6 : 146-149,2001
      OpenUrlCrossRefPubMed
    11. ↵
      Lovegrove JM: Dental plaque revisited: bacteria associated with periodontal disease. J N Z Soc Periodontol 87:7 -21, 2004
    12. ↵
      Lalla E, Lamster IB, Drury S, Fu C, Schmidt AM: Hyperglycemia, glycoxidation and receptor for advanced glycation endproducts: potential mechanisms underlying diabetic complications, including diabetes-associated periodontitis. Periodontol 23:50 -62, 2000
      OpenUrlCrossRef
    13. ↵
      Salvi G E, Yalda, B, Collins JG, Jones BH, Smith FW, Arnold RR, Offenbacher S: Inflammatory mediator response as a potential risk marker for periodontal diseases in insulin-dependent diabetes mellitus patients. J Periodontol 68:127 -135, 1997
      OpenUrlCrossRefPubMedWeb of Science
    14. Miller LS, Manwell MA, Newbold D, Reding ME, Rasheed A, Blodgett J, Kornman KS: The relationship between reduction in periodontal inflammation and diabetes control: a report of 9 cases. J Periodontol 63:843 -848, 1992
      OpenUrlPubMedWeb of Science
    15. ↵
      Tsai C, Hayes C, Taylor GW: Glycemic control of type 2 diabetes and severe periodontal disease in the US adult population. Community Dent Oral Epidemiol 30:182 -192, 2002
      OpenUrlCrossRefPubMedWeb of Science
    16. ↵
      Page RC, Offenbacher S, Schroeder HE, Seymour GJ, Kornman KS: Advances in the pathogenesis of periodontitis: summary of developments, clinical implications and future directions. Periodontol 200014 : 216-248,1997
      OpenUrlCrossRef
    17. ↵
      Papapanou PN: Epidemiology of periodontal diseases: an update. J Int Acad Periodontol 1:110 -116, 1999
      OpenUrlPubMed
    18. ↵
      Wittebole X, Coyle SM, Kumar A, Goshima M, Lowry SF, Calvano SE: Expression of tumour necrosis factor receptor and Toll-like receptor 2 and 4 on peripheral blood leucocytes of human volunteers after endotoxin challenge: a comparison of flow cytometric light scatter and immunofluorescence gating. Clin Exp Immunol 141:99 -106, 2005
      OpenUrlCrossRefPubMedWeb of Science
    19. ↵
      Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M: Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med 188:2091 -2097, 1998
      OpenUrlAbstract/FREE Full Text
    20. ↵
      Takeda K, Kaisho T, Akira S: Toll-like receptors. Ann Rev Immunol21 : 335-376,2003
      OpenUrlCrossRefPubMedWeb of Science
    21. ↵
      Akira S, Sato S: Toll-like receptors and their signaling mechanisms. Scand J Infect Dis 35: 555-562,2003
      OpenUrlCrossRefPubMedWeb of Science
    22. ↵
      Verma S: C-reactive protein incites atherosclerosis. Can J Cardiol 20 (Suppl. B):29B -31B, 2004
    23. Salvi GE, Spets-Happonen S, Singer RE, Offenbacher S: Reconstitution of a hyperinflammatory prostaglandin E2 response to Porphyromonas gingivalis challenge in severe combined immunodeficient mice. J Periodontol 76:16 -21, 2005
      OpenUrlPubMed
    24. Kurtis B, Develioglu H, Taner IL, Balos K, Tekin IO: IL-6 levels in gingival crevicular fluid (GCF) from patients with non-insulin dependent diabetes mellitus (NIDDM), adult periodontitis and healthy subjects. J Oral Sci 41: 163-167,1999
      OpenUrlPubMed
    25. Grant-Theule DA: Periodontal disease, diabetes, and immune response: a review of current concepts. J West Soc Periodontol Periodontal Abstr44 : 69-77,1996
      OpenUrlPubMed
    26. Engebretson SP, Hey-Hadavi J, Ehrhardt FJ, Hsu D, Celenti RS, Grbic JT, Lamster IB: Gingival crevicular fluid levels of interleukin-1beta and glycemic control in patients with chronic periodontitis and type 2 diabetes. J Periodontol 75:1203 -1208, 2004
      OpenUrlCrossRefPubMedWeb of Science
    27. Sastrowijoto SH, Abbas F, Abraham-Inpijn L, van der Velden U: Relationship between bleeding/plaque ratio, family history of diabetes mellitus and impaired glucose tolerance. J Clin Periodontol17 : 55-60,1990
      OpenUrlPubMed
    28. ↵
      Iacopino AM: Periodontitis and diabetes interrelationships: role of inflammation. Ann Periodontol 6:125 -137, 2001
      OpenUrlCrossRefPubMed
    29. ↵
      Molvig J, Baek L, Christensen P, Manogue KR, Vlassara H, Platz P, Nielsen LS, Svejgaard A, Nerup J: Endotoxin-stimulated human monocyte secretion of interleukin 1, tumour necrosis factor alpha, and prostaglandin E2 shows stable interindividual differences. Scand J Immunol27 : 705-716,1988
      OpenUrlCrossRefPubMedWeb of Science
    30. ↵
      Salvi GE, Beck JD, Offenbacher S: PGE2, IL-1 beta, and TNF-alpha responses in diabetics as modifiers of periodontal disease expression. Ann Periodontol 3:40 -50, 1998
      OpenUrlCrossRefPubMed
    31. ↵
      Kolb H, Mandrup-Poulsen T: An immune origin of type 2 diabetes? Diabetologia 48:1038 -1050, 2005
      OpenUrlCrossRefPubMedWeb of Science
    32. ↵
      Hotamisligi GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM: IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science271 : 665-668,1996
      OpenUrlAbstract/FREE Full Text
    33. ↵
      Boden G: Interaction between free fatty acids and glucose metabolism. Curr Opin Clin Nutr Metab Care 5:545 -549, 2002
      OpenUrlCrossRefPubMedWeb of Science
    34. ↵
      Hotamisligil GS, Hargill NS, Spiegelman BM: Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87 -91, 1993
      OpenUrlAbstract/FREE Full Text
    35. ↵
      Vallance P: Exploring vascular nitric oxide in health and disease: the Goulstonian Lecture 1996. J R Coll Physicians Lond31 : 321-327,1997
      OpenUrlPubMed
    36. ↵
      Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD: Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest97 : 2601-2610,1996
      OpenUrlCrossRefPubMedWeb of Science
    37. ↵
      Corbett J, Serup P, Bonner-Weir S, Nielsen JH: Beta-cell ontogeny: growth and death. Diabetologia 40 (Suppl. 3):B27 -B32, 1997
    38. ↵
      Boyko EJ, Leonetti DL, Bergstrom RW, Newell-Morris L, Fujimoto WY: Visceral adiposity, fasting plasma insulin, and blood pressure in Japanese-Americans. Diabetes Care 18: 174-181,1995
      OpenUrlAbstract/FREE Full Text
    39. ↵
      Bjorklund A, Yaney G, McGarry JD, Weir G: Fatty acids and beta-cell function. Diabetologia 40 (Suppl. 3):B21 -B26, 1997
    40. ↵
      Unger RH: Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes44 : 863-870,1995
      OpenUrlAbstract/FREE Full Text
    41. ↵
      Wellen KE, Hotamisligil GS: Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112:1785 -1788, 2003
      OpenUrlCrossRefPubMedWeb of Science
    42. Brownlee M: A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest 112:1788 -1790, 2003
      OpenUrlCrossRefPubMedWeb of Science
    43. ↵
      Hotamisligi GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM: Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409 -2415, 1995
    44. ↵
      Savage DB, Petersen KF, Shulman GI: Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension45 : 828-833,2005
      OpenUrlAbstract/FREE Full Text
    45. Jove M, Planavila A, Laguna JC, Vazquez-Carrera M: Palmitate-induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kappaB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells. Endocrinology 146:3087 -3095, 2005
      OpenUrlCrossRefPubMedWeb of Science
    46. Baron AD: Insulin resistance and vascular function. J Diabetes Complications 16:92 -102, 2002
      OpenUrlCrossRefPubMedWeb of Science
    47. ↵
      Rattigan S, Clark MG, Barrett EJ: Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes46 : 1381-1388,1997
      OpenUrlAbstract/FREE Full Text
    48. ↵
      Mattila KJ, Asikainen S, Wolf J, Jousimies-Somer H, Valtonen V, Nieminen M: Age, dental infections, and coronary heart disease. J Dent Res79 : 756-760,2000
      OpenUrlAbstract/FREE Full Text
    49. Genco R, Offenbacher S, Beck JD: Periodontal disease and cardiovascular disease: epidemiology and possible mechanisms. J Am Dent Assoc133 (Suppl.): 14S-22S,2002
      OpenUrlAbstract/FREE Full Text
    50. ↵
      Beck JD, Slade G, Offenbacher S: Oral disease, cardiovascular disease and systemic inflammation.Periodontol 2000 23:110 -120, 2000
    51. ↵
      Yu WK, Li WQ, Li N, Li JS: Influence of acute hyperglycemia in human sepsis on inflammatory cytokine and counterregulatory hormone concentrations. World J Gastroenterol 9:1824 -1827, 2003
      OpenUrlPubMedWeb of Science
    52. Krogh-Madsen R, Moller K, Dela F, Kronborg G, Jauffred S, Pedersen BK: Effect of hyperglycemia and hyperinsulinemia on the response of IL-6, TNF-alpha, and FFAs to low-dose endotoxemia in humans. Am J Physiol Endocrinol Metab286 : E766-E772,2004
      OpenUrlAbstract/FREE Full Text
    53. ↵
      Naguib G, Al-Mashat H, Desta T, Graves DT: Diabetes prolongs the inflammatory response to a bacterial stimulus through cytokine dysregulation. J Invest Dermatol 123:87 -92, 2004
      OpenUrlCrossRefPubMedWeb of Science
    54. ↵
      Zhang L, Zalewski A, Liu Y, Mazurek T, Cowan S, Martin JL, Hofmann SM, Vlassara H, Shi Y: Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation108 : 472-478,2003
      OpenUrlAbstract/FREE Full Text
    55. ↵
      Vlassara H: The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev 17:436 -443, 2001
      OpenUrlCrossRefPubMedWeb of Science
    56. ↵
      Hasegawa G, Hunter AJ, Charonis AS: Matrix nonenzymatic glycosylation leads to altered cellular phenotype and intracellular tyrosine phosphorylation. J Biol Chem 270:3278 -3283, 1995
      OpenUrlAbstract/FREE Full Text
    57. ↵
      Hong SB, Lee KW, Handa JT, Joo CK: Effect of advanced glycation end products on lens epithelial cells in vitro. Biochem Biophys Res Commun275 : 53-59,2000
      OpenUrlCrossRefPubMedWeb of Science
    58. ↵
      Basta G, Lazzerini G, Del Turco S, Ratto GM, Schmidt AM, De Caterina R: At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler Thromb Vasc Biol25 : 1401-1407,2005
    59. ↵
      Bendayan M: Immunocytochemical detection of advanced glycated end products in rat renal tissue as a function of age and diabetes. Kidney Int54 : 438-447,1998
      OpenUrlCrossRefPubMedWeb of Science
    60. Nakayama M, Kawaguchi Y, Yamada K, Hasegawa, T, Takazoe K, Katoh N, Hayakawa H, Osaka N, Yamamoto H, Ogawa A, Kubo H, Shigematsu T, Sakai O, Horiuchi S: Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int 51: 182-186,1997
      OpenUrlCrossRefPubMedWeb of Science
    61. Lalla E, Lamster IB, Stern DM, Schmidt AM: Receptor for advanced glycation end products, inflammation, and accelerated periodontal disease in diabetes: mechanisms and insights into therapeutic modalities. Ann Periodontol6 : 113-118,2001
      OpenUrlCrossRefPubMed
    62. ↵
      Hou FF, Miyata T, Boyce J, Yuan Q, Chertow GM, Kay J, Schmidt AM, Owen WF: Beta(2)-microglobulin modified with advanced glycation end products delays monocyte apoptosis. Kidney Int 59:990 -1002, 2001
      OpenUrlCrossRefPubMedWeb of Science
    63. ↵
      Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D: Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14:1521 -1528, 1994
      OpenUrlAbstract/FREE Full Text
    64. ↵
      Kirstein M, Brett J, Radoff S, Ogawa S, Stern D, Vlassara H: Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc Natl Acad Sci U S A87 : 9010-9014,1990
      OpenUrlAbstract/FREE Full Text
    65. ↵
      Poligone B, Weaver DJ Jr, Sen P, Baldwin AS Jr: Elevated NF-kappaB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function. J Immunol 168:188 -196, 2002
      OpenUrlAbstract/FREE Full Text
    66. ↵
      Liu J, Beller DI: Distinct pathways for NF-kappa B regulation are associated with aberrant macrophage IL-12 production in lupus- and diabetes-prone mouse strains. J Immunol 170:4489 -4496, 2003
      OpenUrlAbstract/FREE Full Text
    67. ↵
      Nichols TC, Fischer TH, Deliargyris EN, Baldwin AS Jr: Role of nuclear factor-kappa B (NF-kappa B) in inflammation, periodontitis, and atherogenesis. Ann Periodontol 6:20 -29, 2001
      OpenUrlCrossRefPubMed
    68. ↵
      Beck JD, Eke P, Heiss G, Madianos P, Couper D, Lin D, Moss K, Elter J, Offenbacher S: Periodontal disease and coronary heart disease: a reappraisal of the exposure. Circulation 112:19 -24, 2005
      OpenUrlAbstract/FREE Full Text
    69. ↵
      Bierhaus A, Humpert PM, Stern DM, Arnold B, Nawroth PP: Advanced glycation end product receptor-mediated cellular dysfunction. Ann N Y Acad Sci 1043: 676-6802005
      OpenUrlCrossRefPubMedWeb of Science
    70. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM: N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274:31740 -31749, 1999
      OpenUrlAbstract/FREE Full Text
    71. ↵
      Kumar A, Takada Y, Boriek AM, Aggarwal BB: Nuclear factor-kappa B: its role in health and disease. J Mol Med 82:434 -448, 2004
      OpenUrlCrossRefPubMedWeb of Science
    72. ↵
      Lowe GD: The relationship between infection, inflammation, and cardiovascular disease: an overview. Ann Periodontol 6:1 -8, 2001
    73. ↵
      Danesh J, Appleby P: Persistent infection and vascular disease: a systematic review. Expert Opin Invest Drugs 7:691 -713, 1998
    74. Desvarieux M, Demmer RT, Rundek T, Boden-Albala B, Jacobs DR Jr, Sacco RL, Papapanou PN: Periodontal microbiota and carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation 111:576 -582, 2005
      OpenUrlAbstract/FREE Full Text
    75. ↵
      Fiehn NE, Larsen T, Christiansen N, Holmstrup P, Schroeder TV: Identification of periodontal pathogens in atherosclerotic vessels. J Periodontol76 : 731-736,2005
      OpenUrlCrossRefPubMedWeb of Science
    76. ↵
      Deliargyris EN, Madianos PN, Kadoma W, Marron I, Smith SC Jr, Beck JD, Offenbacher S: Periodontal disease in patients with acute myocardial infarction: prevalence and contribution to elevated C-reactive protein levels. Am Heart J 147: 1005-1009,2004
      OpenUrlCrossRefPubMedWeb of Science
    77. ↵
      Elter JR, Offenbacher S, Toole, JF, Beck JD: Relationship of periodontal disease and edentulism to stroke/TIA. J Dent Res82 : 998-1001,2003
      OpenUrlAbstract/FREE Full Text
    78. ↵
      Hujoel PP, Drangsholt M, Spiekerman C, DeRouen TA: Pre-existing cardiovascular disease and periodontitis: a follow-up study. J Dent Res81 : 186-191,2002
      OpenUrlAbstract/FREE Full Text
    79. ↵
      Beck JD, Elter JR, Heiss G, Couper D, Mauriello SM, Offenbacher S: Relationship of periodontal disease to carotid artery intima-media wall thickness: the atherosclerosis risk in communities (ARIC) study. Arterioscler Thromb Vasc Biol 21: 1816-1822,2001
      OpenUrlAbstract/FREE Full Text
    80. ↵
      Wagenknecht LE, D'Agostino R Jr, Savage PJ, O'Leary DH, Saad MF, Haffner SM: Duration of diabetes and carotid wall thickness: the Insulin Resistance Atherosclerosis Study. Stroke 28:999 -1005, 1997
      OpenUrlAbstract/FREE Full Text
    81. ↵
      Loe H: Periodontal disease: the sixth complication of diabetes mellitus. Diabetes Care 16: 329-334,1993
      OpenUrlAbstract/FREE Full Text
    82. ↵
      Grossi SG, Skrepcinski FB, DeCaro T, Robertson DC, Ho AW, Dunford RG, Genco RJ: Treatment of periodontal disease in diabetics reduces glycated hemoglobin. J Periodontol 68:713 -719, 1997
      OpenUrlCrossRefPubMedWeb of Science
    83. ↵
      Taylor GW, Burt BA, Becker MP, Genco RJ, Shlossman M: Glycemic control and alveolar bone loss progression in type 2 diabetes. Ann Periodontol3 : 30-39,1998
      OpenUrlCrossRefPubMed
    84. ↵
      Taylor GW, Burt BA, Becker MP, Genco RJ, Shlossman M, Knowler WC, Pettitt, DJ: Severe periodontitis and risk for poor glycemic control in patients with non-insulin-dependent diabetes mellitus. J Periodontol67 (Suppl. 10): 1085-1093,1996
      OpenUrlCrossRefPubMedWeb of Science
    85. Sjogren K, Lundberg AB, Birkhed D, Dudgeon DJ, Johnson MR: Interproximal plaque mass and fluoride retention after brushing and flossing: a comparative study of powered tooth-brushing, manual toothbrushing and flossing. Oral Health Prev Dent 2: 119-124,2004
      OpenUrlPubMed
    86. ↵
      Van der WeijdenGA, Timmerman MF, Piscaer M, IJzerman Y, Van der Velden UL: Plaque removal by professional electric toothbrushing compared with professional polishing. J Clin Periodontol31 : 903-907,2004
      OpenUrlPubMed
    87. ↵
      Sharma NC, Galustians HJ, Qaqish J, Cugini M, Warren PR: The effect of two power tooth-brushes on calculus and stain formation. Am J Dent 15: 71-76,2002
      OpenUrlPubMed
    88. ↵
      Bauroth K, Charles CH, Mankodi SM, Simmons K, Zhao Q, Kumar LD: The efficacy of an essential oil antiseptic mouthrinse vs. dental floss in controlling interproximal gingivitis: a comparative study. J Am Dent Assoc134 : 359-365,2003
      OpenUrlAbstract/FREE Full Text
    89. ↵
      Mandel ID: Antimicrobial mouthrinses: overview and update. J Am Dent Assoc 125 (Suppl. 2):2S -10S, 1994
      OpenUrlPubMed
    90. ↵
      Wicht MJ, Haak R, Kneist S, Noack MJ: A triclosan-containing compomer reduces Lactobacillus spp. predominant in advanced carious lesions. Dent Mater 21:831 -836, 2005
      OpenUrlPubMed
    91. Brading MG, Cromwell VJ, Jones NM, Baldeck JD, Marquis RE: Anti-microbial efficacy and mode of action studies on a new zinc/Triclosan formulation. Int Dent J 53 (Suppl. 1):363 -370, 2003
      OpenUrlPubMed
    92. Mata AD, Marques D, Rocha S, Francisco H, Santos C, Mesquita MF, Singh J: Effects of diabetes mellitus on salivary secretion and its composition in the human. Mol Cell Biochem 261:137 -142, 2004
      OpenUrlCrossRefPubMed
    93. Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K: M(3) muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol 558:561 -575, 2004
      OpenUrlCrossRefPubMedWeb of Science
    94. Tobin G, Giglio D, Gotrick B: Studies of muscarinic receptor subtypes in salivary gland function in anaesthetized rats. Auton Neurosci100 : 1-9,2002
      OpenUrlCrossRefPubMedWeb of Science
    95. Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo MM: Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci U S A 97:9579 -9584, 2000
      OpenUrlAbstract/FREE Full Text
    96. Gautam D, Heard TS, Cui Y, Miller G, Bloodworth L, Wess J: Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol Pharmacol66 : 260-267,2004
      OpenUrlAbstract/FREE Full Text
    97. Atkinson JC, Grisius M, Massey W: Salivary hypofunction and xerostomia: diagnosis and treatment. Dent Clin North Am49 : 309-326,2005
      OpenUrlCrossRefPubMed
    98. Greenspan D: Xerostomia: diagnosis and management. Oncology (Williston Park) 10 (Suppl. 3):7 -11, 1996
    99. Levato CM: Caries management: a new paradigm. Compend Contin Educ Dent26 (Suppl. 6A): 448-454,2005
    100. Petersson GH, Fure S, Twetman S, Bratthall D: Comparing caries risk factors and risk profiles between children and elderly. Swed Dent J28 : 119-128,2004
      OpenUrlPubMed
    101. ↵
      Banas JA: Virulence properties of Streptococcus mutans. Front Biosci 9:1267 -1277, 2004
      OpenUrlCrossRefPubMedWeb of Science
    102. ↵
      Russotto SB: Asymptomatic parotid gland enlargement in diabetes mellitus. Oral Surg Oral Med Oral Pathol 52:594 -598, 1981
      OpenUrlCrossRefPubMed
    103. ↵
      Fisher BM, Lamey PJ, Samaranayake LP, MacFarlane TW, Frier BM: Carriage of Candida species in the oral cavity in diabetic patients: relationship to glycaemic control. J Oral Pathol 16:282 -284, 1987
      OpenUrlPubMed
    104. ↵
      Geerlings SE, Hoepelman AI: Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 26:259 -265, 1999
      OpenUrlAbstract/FREE Full Text
    105. ↵
      Akpan A, Morgan R: Oral candidiasis. Postgrad Med J78 : 455-459,2002
      OpenUrlAbstract/FREE Full Text
    106. ↵
      Rossie K, Guggenheimer J: Oral candidiasis: clinical manifestations, diagnosis, and treatment. Pract Periodontics Aesthet Dent9 : 635-641,1997
      OpenUrlPubMed
    107. ↵
      Webb BC, Thomas CJ, Willcox MD, Harty DW, Knox KW: Candida-associated denture stomatitis: aetiology and management: a review. Part 3. Treatment of oral candidosis. Aust Dent J 43:244 -249, 1998
      OpenUrlCrossRefPubMed
    108. ↵
      Lodi G, Scully C, Carrozzo M, Griffiths M, Sugerman PB, Thongprasom K: Current controversies in oral lichen planus: report of an international consensus meeting. Part 2. Clinical management and malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100:164 -178, 2005
      OpenUrlCrossRefPubMed
    109. ↵
      Thornhill MH: Immune mechanisms in oral lichen planus. Acta Odontol Scand 59:174 -177, 2001
      OpenUrlCrossRefPubMedWeb of Science
    110. ↵
      Gandolfo S, Richiardi L, Carrozzo M, Broccoletti R, Carbone M, Pagano M, Vestita C, Rosso S, Merletti F: Risk of oral squamous cell carcinoma in 402 patients with oral lichen planus: a follow-up study in an Italian population. Oral Oncol 40: 77-83,2004
      OpenUrlCrossRefPubMed
    111. ↵
      Huber MA: Oral lichen planus. Quintessence Int35 : 731-752.2004
      OpenUrlPubMed
    112. ↵
      Sugerman PB, Savage NW: Oral lichen planus: causes, diagnosis and management. Aust Dent J 47:290 -297, 2002
      OpenUrlCrossRefPubMed
    113. ↵
      Rhodus NL, Carlson CR, Miller CS: Burning mouth (syndrome) disorder. Quintessence Int 34: 587-593,2003
      OpenUrlPubMed
    114. ↵
      Scala A, Checchi L, Montevecchi M, Marini I, Giamberardino MA: Update on burning mouth syndrome: overview and patient management. Crit Rev Oral Biol Med 14: 275-291,2003
      OpenUrlAbstract/FREE Full Text
    115. ↵
      Greenstein G: Changing periodontal concepts: treatment considerations. Compend Contin Educ Dent 26:81 -22, 84-86, 88 passim, 2005
      OpenUrl
    116. ↵
      Taylor GW, Manz MC, Borgnakke WS: Diabetes, periodontal diseases, dental caries, and tooth loss: a review of the literature. Compend Contin Educ Dent 25: 179-184,186 -188, 190, 2004
      OpenUrl
    117. ↵
      Campus G, Salem A, Uzzau S, Baldoni E, Tonolo G: Diabetes and periodontal disease: a case-control study. J Periodontol 76:418 -425, 2005
      OpenUrlCrossRefPubMedWeb of Science
    118. Guzman S, Karima M, Wang HY, Van Dyke TE: Association between interleukin-1 genotype and periodontal disease in a diabetic population. J Periodontol 74:1183 -1190, 2003
      OpenUrlCrossRefPubMed
    119. ↵
      Mattson JS, Cerutis DR: Diabetes mellitus: a review of the literature and dental implications. Compend Contin Educ Dent22 : 757-760, 762, 764 passim, 2001
      OpenUrl
    120. ↵
      Nishimura F, Soga Y, Iwamoto Y, Kudo C, Murayama Y: Periodontal disease as part of the insulin resistance syndrome in diabetic patients. J Int Acad Periodontol 7:16 -20, 2005
    121. Mealey BL: Diabetes and periodontal disease: two sides of a coin. Compend Contin Educ Dent 21:943 -946, 948, 950, passim, 2000
      OpenUrl
    122. ↵
      Teng YT, Taylor GW, Scannapieco F, Kinane DF, Curtis M, Beck JD, Kogon S: Periodontal health and systemic disorders. J Can Dent Assoc68 : 188-192,2002
    View Abstract
    PreviousNext
    Back to top

    In this Issue

    October 2005, 23(4)
    • Table of Contents
    • Index by Author
    Sign up to receive current issue alerts
    View Selected Citations (0)
    Print
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for your interest in spreading the word about Clinical Diabetes.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Diabetes and Periodontal Infection: Making the Connection
    (Your Name) has forwarded a page to you from Clinical Diabetes
    (Your Name) thought you would like to see this page from the Clinical Diabetes web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Diabetes and Periodontal Infection: Making the Connection
    Janet H. Southerland, George W. Taylor, Steven Offenbacher
    Clinical Diabetes Oct 2005, 23 (4) 171-178; DOI: 10.2337/diaclin.23.4.171

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Add to Selected Citations
    Share

    Diabetes and Periodontal Infection: Making the Connection
    Janet H. Southerland, George W. Taylor, Steven Offenbacher
    Clinical Diabetes Oct 2005, 23 (4) 171-178; DOI: 10.2337/diaclin.23.4.171
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • PERIODONTAL DISEASE AND BACTERIAL INFECTION
      • PERIODONTAL DISEASE AND DIABETES
      • ADVANCED GLYCATION
      • PERIODONTITIS AND CARDIOVASCULAR OUTCOMES IN PATIENTS WITH DIABETES
      • ORAL COMPLICATIONS OF DIABETES
      • CONCLUSIONS
      • Footnotes
      • References
    • Info & Metrics
    • PDF

    Related Articles

    Cited By...

    More in this TOC Section

    • Opportunities and Challenges for Biosimilars: What's on the Horizon in the Global Insulin Market?
    • The Role of the Kidney and Sodium-Glucose Cotransporter-2 Inhibition in Diabetes Management
    • Tests for Screening and Diagnosis of Type 2 Diabetes
    Show more Features

    Similar Articles

    Navigate

    • Current Issue
    • Papers in Press
    • Abridged Standards of Care
    • Archives
    • Submit
    • Subscribe
    • Email Alerts
    • RSS Feeds

    More Information

    • About the Journal
    • Instructions for Authors
    • Journal Policies
    • Reprints and Permissions
    • Advertising
    • Privacy Policy: ADA Journals
    • Copyright Notice/Public Access Policy
    • Contact Us

    Other ADA Resources

    • Diabetes
    • Diabetes Care
    • Diabetes Spectrum
    • Scientific Sessions Abstracts
    • Standards of Medical Care in Diabetes
    • BMJ Open - Diabetes Research & Care
    • Professional Books
    • Diabetes Forecast

     

    • DiabetesJournals.org
    • Diabetes Core Update
    • ADA's DiabetesPro
    • ADA Member Directory
    • Diabetes.org

    © 2021 by the American Diabetes Association. Clinical Diabetes Print ISSN: 0891-8929, Online ISSN: 1945-4953.